
Book
A Simplified Approach

to

Data Structures
Prof.(Dr.)Vishal Goyal, Professor, Punjabi University Patiala

Dr. Lalit Goyal, Associate Professor, DAV College, Jalandhar

Mr. Pawan Kumar, Assistant Professor, DAV College, Bhatinda

Shroff Publications and Distributors

Edition 2014

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Department of Computer Science, Punjabi University Patiala

ONE DIMENSIONAL

ARRAYS

• Introduction to Arrays

• One Dimensional Arrays

• Memory representation of one dimensional

arrays

• Operations performed on arrays

OUTLINE

INTRODUCTION TO ARRAYS

• An array is the linear collection of finite number of

homogeneous data elements.

• Although some programming languages accept arrays in

which elements are of different types.

• Elements of the array are referenced by an index set

consisting of ‘n’ consecutive numbers. We can refer to the

elements in the array as the first element, the second

element and so forth, until we get to the last element.

• An array is the most efficient data structure for storing and

accessing a sequence of objects.

• Array elements are stored in successive memory locations.

• The array are also popular with the name Vectors and

Tables in mathematics.

[0]

Index

Address

Array with 8 elements

[1] [2] [3] [4] [5] [6] [7]

100 102 104 106 108 110 112 114

11 22 33 44 55 66 77 88

=INTRODUCTION TO ARRAYS

• Indices are used to access the stored values in an array.

• Let’s say we have an array of “n” integers, then its first integer

element is indexed with the “0” value and the last integer element

will be represented with “n-1” indexed value.

Example: if we have 8 elements then the first element would be

referenced by a[0] i.e. The first index value ,then other distinct

values in the array are each referenced as:

a[0]=1, a[1]=2, ...a[n-1]5=n i.e. a[7]=8 where “n-1” becomes 7

where “n” was 8 .

 int[] num = new int[5];

Example of Array

 Syntax to declare an array:

dataType[] arrayName;

arrayName = new dataType[N]

Data type of array Name of array No. of elements in an array

int A [6]

 One dimensional array or linear array is a list of a finite number

n of homogeneous data elements such that:

a) The elements of the array are referenced respectively by an index

set consisting of n consecutive numbers.

b) The elements of the array are stored respectively in successive contiguous

memory locations.

 Where the number n of elements is called the length or size of

the array.

 The length or size or number of data elements of the array can

be obtained from the index set by the formula :

A (length of array) = UB – LB + 1

(UB is the largest index, LB is the smallest index of the array.)

ONE DIMENSIONAL ARRAY

Example: in this above figure LB = 1993, UB = 2000 then :

Size of the array :

UB - LB + 1

=2000 - 1993 + 1

=7 + 1

=8

Therefore length or size of an array is 8 .

In this, int specifies the type of the variable. In this example, an integer ,and

R specifies the name of the variable , number of brackets []denotes the size of an array.

Arrays are also known as vectors and tables in mathematics.

Syntax of 1-d array: data_type array_name [no. of elements].

ONE DIMENSIONAL ARRAY

11 12 13 14 15 16 17

Values

Name

Index set

18

R[0] R[1] R[2] R[3] R[4] R[5] R[6] R[7]

1993 1994 1995 1996 1997 1998 1999 2000

MEMORY REPRESENTATION OF ONE DIMENSIONAL ARRAY

Let LA is a linear array in the memory of the computer.

Memory of computer is simply a sequence of addressed locations

therefore, the elements of LA are stored in the successive memory

cells.

LOC (LA[k]) = address of element LA[k] of the array LA.

Accordingly, the computer needs to keep track only of the address of

the first element of LA called the base address of LA (denoted by

Base (LA)).

Using base address the computer calculates the address of any

element of LA by the following formula:

LOC (LA[k]) = Base (LA) + w (k-lower bound)
Where w is the number of words per memory cell for the array LA.

Example: char X[100];

 Let char uses 1 location storage.

 If the base address is 1200 then the next element is in 1201.
Index Function is written as:

Loc (X[i]) = Loc(X[0]) + i , i is subscript and LB = 0

1200 1201 1202 1203

X[0] X[1] X[2]

MEMORY REPRESENTATION OF ONE DIMENSIONAL ARRAY

 In general, index function:

Loc (X[i]) = Loc(X[LB]) + w*(i-LB);

where w is length of memory location required.
For real number: 4 byte, integer: 2 byte and character: 1 byte.

 If LB = 5, Loc(X[LB]) = 1200, and w = 4, find Loc(X[8]) ?

Loc(X[8]) = Loc(X[5]) + 4*(8 – 5)
= 1212

MEMORY REPRESENTATION OF ONE DIMENSIONAL ARRAY

200 300 250 302 400 202 500 100

1995 1996 1997 1998 1999 2000 2001 2002

Example : lower bound(lb)=1995

Upper bound(ub)=2002 and as integer occupies 2 bytes of

memory therefore

W= 2 and the first element is at memory location 1000 therefore

base(s)=1500.

Loc(Sk) = base(s) + w (k- lb)

Loc(S1998) =1500 + 2 (1998-1995)

Loc(S1998) = 1500 + 2 (3)

= 1506

ONE DIMENSIONAL ARRAY

TRAVERSAL : Processing each element in the list.

INSERTION : Adding a new element to the list.

DELETION : Removing an element from the list.

SEARCHING: Finding a location of an element in the given value.

SORTING : Arranging the elements in proper order.

MERGING : Combining two list into a single list.

OPERATIONS PERFORMED ON ARRAYS

Traversing

• Definition: traversing accesses each data item exactly once.

• Example : suppose there is a linear array a as:

• In traversing ,we start from beginning and visit till last element.

• In this we access value of each element exactly once like :

a[1] =10 ,a[2] =20 ,a[3] =30 ,a[4] =40 ,a[5] =50 .

14

Traversing of an Array

20 30 40 50

3 4 5

10

1 2

 Traversing operation means visiting every node element once.
e.g. to print, etc.

 Example algorithm:

Traversal

1. [Assign counter]

K=LB // LB = 0

2. Repeat step 2.1 and 2.2 while K <= UB // If LB = 0

2.1 [visit element]

do PROCESS on LA[K]

2.2 [add counter]

K=K+1

3. end repeat step 2

4. exit

Insertion

Definition: adds a new data item in given collection of data items.

Example: consider 5 names in list namely Amit, Aditi, Anil, Pawan and Naveen.

16

If we want to insert a new element in the array at 4th position with

its value Ravi.

Array ‘S’ with 5 element

1 2 3 4 5 6 7 8

Amit Aditi Anil Pawan Naveen

Array ‘S’ with new element inserted at 4th Position

1 2 3 4 5 6 7 8

Amit Aditi Anil RaviPawan Naveen

So Pawan, Naveen would be shifted by one position like :

 Insert item at the back is easy if there is a space. Insert

item in the middle requires the movement of all elements

to the right as in figure shown below.

Insertion

12 3 44 19 100 … 5 10 18 ? … ?

0 1 2 3 4 k MAX_LIST-1

k+1

Array indexes New item

size 1 2 3 4 5 k+1 MAX_LIST
items

list positions

Figure 3: Shifting items for insertion at position 3

Insertion Algorithm

 Example algorithm:

INSERT(LA, N, K, ITEM)

//LA is a linear array with N element

//K is integer positive where K < N and LB = 0

//Insert an element, ITEM in index K

1. [Assign counter]

J = N – 1; // LB = 0

2. Repeat step 2.1 and 2.2 while J >= K

2.1 [shift to the right all elements from J]

LA[J+1] = LA[J]

2.2 [decrement counter] J = J – 1

3. [Stop repeat step 2]

4. [Insert element] LA[K] = ITEM

5. [Reset N] N = N + 1

6. Exit

Deletion

Definition : Removing an existing data item from the given collection of data items.

Example : Consider 6 names in list namely Amit, Aditi, Anil , Ravi, Pawan and

Naveen .

19

If we want to delete Anil from list which is at location 3,then

Ravi , Pawan , Naveen would be shifted one step forward that is

shown in the figure below:

Array ‘A’ with 6 elements

Array ‘S’ with 5 elements after deleting element from 3rd position

1 2 3 4 5 6 7 8

Amit Aditi Anil Ravi Pawan Naveen

1 2 3 4 5 6 7 8

Amit Aditi Anil Ravi Pawan Naveen

 Delete item

(a)

Deletion

12 3 44 100 … 5 10 18 ? … ?

0 1 2 3 4 k-1 k MAX_LIST-1

k+1

Array indexes Delete 19

size 1 2 3 4 5 k k+1 MAX_LIST
items

ADT list positions

Figure 4: Deletion causes a gap

(b)

Deletion

12 3 44 100 ……… 5 10 18 ? … ?

0 1 2 3 k-1 MAX_LIST-1

k

Array indexes

size 1 2 3 4 k MAX_LIST
items

ADT list positions

Figure 5: Fill gap by shifting

Example algorithm:

Deletion Algorithm

DELETE(LA, N, K, ITEM)

1. ITEM = LA[K]

2. Repeat for I = K to N–2 // If LB = 0

2.1 [Shift element ke J + 1, forward]

LA[I] = LA[I+1]

3. [end of loop]

4. [Reset N in LA]

N = N – 1

5. Exit

Searching

 Searching is the process of determining whether or not a given

value exists in a data structure or a storage media.

 We will study two searching algorithms

•Linear Search

•Binary Search

 The linear (or sequential) search algorithm on an array is:

Start from beginning of an array/list and continues until the item

is found or the entire array/list has been searched.

 Sequentially scan the array, comparing each array item with the

searched value.

 Linear search algorithm has complexity of O(n).

(Note: linear search can be applied to both sorted and unsorted arrays.)

Linear Search

Linear Search

• The elements of the array need not in sorted order.

• It can be applied on any linear data structures even if elements of data structures

don’t occupy the contiguous memory locations.

• Start from beginning and compare with each element and continues until element is

found or searched is made.

• The complexity of linear search is Big O(n).

Example : consider a linear array a as

25

Array ‘A’ with 5 elements

If(Data==Item)

(data==66)

22 33 44 5511

Linear Search Algorithm

Searching the position of given element “Data” in an

array ‘S’ having ‘n’ elements.

1. Repeat steps 2 and 3 for i=1 to n

2. If S[i] = Data then

Print “ Element is found at position “: I

Exit

[End If]

3. Set i= i+1

[End loop]

4. Print: “ Desired element Data is found in the array”

5. Exit

 Binary search algorithm is efficient if the array is sorted.
 A binary search is used whenever the list starts to become

large.
 The binary search starts by testing the data in the element at

the middle of the array to determine if the target is in the
first or second half of the list.

 If it is in the first half, we do not need to check the second
half. If it is in the second half, we do not need to test the
first half. In other words we eliminate half the list from
further consideration. We repeat this process until we find
the target or determine that it is not in the list.

 To find the middle of the list, we need three variables, one to
identify the beginning of the list, one to identify the middle
of the list, and one to identify the end of the list.

Binary Search

Binary Search

 Assume we want to find 22 in a sorted list as follows:

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]

4 7 8 10 14 21 22 36 62 77 81 91

 The three indexes are first, mid and last. Given first as 0
and last as 11, mid is calculated as follows:

mid = (first + last) / 2
mid = (0 + 11) / 2 = 11 / 2 = 5

 At index location 5, the target is greater than the list value

(22 > 21). Therefore, eliminate the array locations 0 through

5 (mid is automatically eliminated). To narrow our search,

we assign mid + 1 to first and repeat the search.

Binary Search

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]

4 7 8 10 14 21 22 36 62 77 81 91

0 5 11

Target: 22

22 > 21

first mid last

 The next loop calculates mid with the new value for first and

determines that the midpoint is now 8 as follows:

mid = (6 + 11) / 2 = 17 / 2 = 8

Binary Search

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]

4 7 8 10 14 21 22 36 62 77 81 91

6 8 11

Target: 22

22 < 62

first mid last

 When we test the target to the value at mid a second time, we discover that

the target is less than the list value (22 < 62). This time we adjust the end of

the list by setting last to mid – 1 and recalculate mid. This step effectively

eliminates elements 8 through 11 from consideration. We have now arrived

at index location 6, whose value matches our target. This stops the search.

Binary Search

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]

4 7 8 10 14 21 22 36 62 77 81 91

6 6 7

Target: 22

22 = 22

first mid last

8 6 7

first mid last

function terminates

Binary Search Algorithm

BINARY(DATA,LB,UB,ITEM,LOC)

1.[Initialize segment variables.]

Set BEG = LB,END =UB and MID = INT(BEG + END)/2).

2.Repeat Steps 3 and 4 while BEG ≤ END and DATA[MID] ≠ ITEM.

3.If ITEM< DATA[MID],then:

Set END = MID -1 else

Set BEG =MID +1.(end of if structure)

4. Set MID =INT((BEG + END)/2).

(End of step 2 loop.)

5.If DATA[MID]=ITEM,then:

Set LOC= MID.

Else:

Set LOC= NULL.

(end of if structure)

6.Exit.

Binary Search Algorithm

Complexity Analysis of Binary Search

The best case for binary search occurs when the element being searched for is exactly

at the middle of the sorted array. In this case only comparison is required to find that

desired element giving a best case runtime of Big O(1).

Worst case for the binary search occurs when the element is not found in the array.

since binary search halves the sorted array in each step until there are no values that

can be halved. The efficiency of binary search in this case can be expressed as

logarithmic function. For calculating the worst complexity, the number of elements in

the array as power of two (i.e. n=2x).

After 1st comparison, number of elements remains=n/21 =n/2

After 2nd comparison, number of elements remains=n/22 =n/2

After 3rd comparison, number of elements remains=n/23 =n/2

:

:

After xth comparison, number of elements remains=n/2x=1

Total number of maximum comparisons = x =log2 n
34

Multi- Dimensional Arrays

• The above table tells the score of five students in the class. First column specifies

the roll number of students and second columns specifies the marks of particular

student whose roll number is mentioned in the row.

• The elements of two dimensional array a can be referenced using any of the

notations shown below:

Aij OR A[i][j] OR A(i,j)

Consider the example of two dimensional array A of order 2*3. Here array A has 2

rows and 3 columns. Total numbers of elements in arrays A is 2*3 i.E 6

35

a11

a21

a12

a22

a13

a23

A=

1 2 3

1

2

A Two Dimensional array with 2 rows and 3 columns

Memory Representation Of Two Dimensional

Array

• Consider a two dimensional array of order r*c. While representing a two

dimensional array on paper ,we write its elements in rows and columns. But when

such an array is stored into the computer memory ,its r*c elements will occupy r*c

consecutive memory locations.

• The choice between the two ways for storing the dimensional array into the

computer memory depends on the programming language. The representation of two

dimensional array using both the way. Row major order and column major are

shown below for an array a of order 2*3.

36

a11 a12 a13 a21 a22 a23

Row1 Row2

Row major order representation of two dimension array ‘A’

Memory Representation of Two Dimensional

Array

As shown in the figure above the elements of the first row of the array are stored first

and after that elements of the second row are stored.

37

a11 a12 a12 a22 a13 a23

Col1

Column major order representation of two dimension array ‘A’

As shown in the above figure for column major order ,the

element of the first column of the array are stored first and after

that the element of the second column are stored and so on.

Col2 Col3

General Multidimensional Array

• An array can be of three dimensional, four dimensional ,..N-dimensional. The

concept of referencing an element of n-dimensional array can be extended from one

dimensional or two dimensional arrays.

• Generally speaking ,total number of elements of elements in a n dimensional array

can be calculated by multiplying the length of each dimension. Here to reference

any element of the n-dimensional array, n subscript will be required. An n

dimensional array B can be declared as:

B[lb1: ub1 , lb2 : ub2 , lb3 : ub3 , ……., lbn : ubn]

• Here lbi is the lower index and ubi is the upper index of the ith dimension.

• Length of ith dimension can be calculated as:

• Length of ith dimension (li)=ubi - lbi + 1 where 1 ≤i ≤n

• Each element is referenced by using n subscript k1,k2,k3,…….Kn each with the

property as lb1 ≤ k1 ≤ ub1,…..Lb2 ≤ k2 ≤ ub2,…..Lbn ≤ kn ≤ ubn

38

General Multidimensional Array

� The of storage for multidimensional array is same as for two dimensional array i.e.

Either in row major order or column major order.

� Consider a three dimensional array t(2:5,1:3,4:6) which is a collection of 36(4*3*3)

elements.

39

t2.1.4 t2.1.5 t2.1.6 t2.2,4 t2.2.5 t2.2.6 t2.3.4 t2.3.5 t2.3.6

t3.1.4 t3.1.5 t3.1.6 t3.2.4 t3.2.5 t3.2.6 t3.3.4 t3.3.5 t3.3.6

t4.1.4 t4.1.5 T4,1.6 t4.2,4 t4.2.5 T4,2.6 t4.3.4 T4,3,5 t4.3.6

t5.1.4 t5.1.5 t5.1.6 t5.2,.4 t5.2,.5 t5.2,6 t5.3.4 t5.3.5 t5.3,6

Sequence of elements of a three dimensional array t in row major order

General Multidimensional Array

Consider a three dimensional array A having LB and UB as lower index and upper

index of first dimension ,lb and ub as lower index and upper index of second dimension

,lb and ub as lower index and upper index of third dimension .The length of each

dimension (l,l,l respectively)

L 1= ub1 - lb1 + 1 Length of the First Dimension

L 2=ub2 - lb2 + 1 Length of the Second Dimension

L 3= ub3 - lb3 + 1 Length of the Third Dimension

We can calculate the address of any element A[i,j,k] (such that lb1 ≤ i ≤ ub1 , lb2 ≤ j ≤

ub2 , lb3 ≤ k ≤ ub3) using the following formula:

For Row Major Order

Address of(A[i][j][k]) = Base(A) + w[l2 l3 (i - lb1) + l3 (j - lb2) + (k - lb3)]

For Column Major Order

Address of(a[i][j][k]) = Base(A) + w[(i - lb1) + l1 (j - lb2) + l1 l2 (k - lb3)] 40

Sparse Arrays

• As mentioned earlier ,matrices are two dimensional arrays in which elements are

arranged into rows and columns. A matrix of order r*c is collection of r*c elements

which are arranged in r rows and c columns .

• Each element of a two dimensional array is referenced by using two subscript ,1st

subscript to represent row index and 2nd subscript to represent column index.

41

Sparse Matrix

• A matrix M said to be sparse matrix if majority of its elements are meaningless.

Such kind of matrices contains high density of meaningless elements or we can say

that the sparse matrix has a very few elements which are significant.

• If we consider zero as meaningless elements then the sparse matrix which has

majority of zero elements .The below shown array 6*5 is a sparse matrix because

maximum of its elements are zero.

42

0 0 1 0 0
0 0 0 0 0
5 0 0 0 0
0 0 0 2 0
0 0 0 0 1
0 7 0 0 5

Diagonal Matrix
• A matrix M is said to b diagonal matrix if and only if M[I,j] =0 for i!= j. that is all

the non –diagonal elements are zero.

43

5 0 0 0
0 7 0 0
0 0 8 0
0 0 0 0

A Diagonal matrix

Upper Triangular Matrix

5 8 7 9
0 3 2 16
0 0 5 7
0 0 0 8

An Upper Triangular matrix

0 8 7 9
0 0 2 16
0 0 0 7
0 0 0 0

A Strictly Upper Triangular matrix

• A matrix m is called upper triangular matrix if and only if [i,j]=0 for i>j.

• That is, all the elements of the matrix below the diagonal elements are zero .

• Matrix is said to be strictly upper triangular if all the diagonal elements are

also

zero along with the elements below the diagonal

Lower Triangular Matrix

44

• A matrix M is called lower triangular matrix if and only if

[i,j]=0 for i<j.

• That is, all the elements of the matrix above the diagonal

elements are zero .

• Matrix is said to be strictly lower triangular if all the diagonal

elements are also zero

along with the elements above the diagonal.

5 0 0 0

1 3 0 0
8 9 5 0
3 2 7 8

A lower Triangular matrix

0 0 0 0

1 0 0 0
8 9 0 0
3 2 7 0

A Strictly Lower Triangular matrix

Memory Representation Of Special Kind Of

Matrices

45

• Generally to store an ordinary n*n matrix into memory ,we

need n2 memory locations. But in case of special matrices which

are discussed above the memory requirements can be reduced up

to some extent.

• Some of the techniques for storing these special matrix are

discussed in the next slide.

46

• In this technique the element of matrix are stored in a one

dimensional array.

Only the non-zero element of the matrix are stored and zero

entries are discarded.

• Let us store a diagonal matrix M of order n*n in a one

dimensional array A. There will be at most n non-zero elements

at the diagonal position of matrix . The element m1,1 will be

stored as element a1, element m2,2 will be stored as element a2

and so on up to the element mn,n which will be stored as

element an.

Method of linearization

5 0 0 0
0 7 0 0
0 0 8 0
0 0 0 9

A matrix ‘M’ of order 4*4 and array representation of the matrix

a1

5 7 8 9

a2 a3 a4

Method Of Vector Representation

47

• In this technique ,the non-zero elements of the sparse matrix

are stored in the array

along with its row id and column id. The non zero elements are

stored in the row

major order by discarding all the zero entries.

• For example ,using the method of vector representation, a 4*65

sparse array which

is shown below will be store by vector V as:

6 0 0 0 0
0 0 2 0 0
0 5 0 0 3
0 0 0 8 0

Method Of Vector Representation

48

However in vector representation ,we are storing row id and column id along with

the element itself, but this approach avoids storage of the zero entries.

1 1 6

2 3 2

3 2 5

3 5 3

4 4 8

V[1]

V[3]

V[5]
Vector representation of non-zero elements of a sparse matrix

V[4]

V[2]

49

• Array is the simple kind of data structure which is very easy to implementation.

• Address of any element of the array can be calculated very easily as elements are

stored in contiguous memory locations.

• Array can be used to implement other data structure such as stack ,queue, trees and

graph.

• If elements of an array are stored in some logical order then binary search can be

applied to search an element in the array efficiently.

Advantages Of Array

50

• Array is the static kind of data structure. Memory used by array cannot be increased

or decreased whether it is allocated at run time or compile time.

• Insertion and deletion of elements are very time consuming in array.

• Only homogeneous elements can be stored in the array. Therefore , in case we want

to store the data of mixed type, the array cannot be used.

Limitations Of Array

 Sorting is the process of rearranging your data

elements/Item in ascending or descending order

Unsorted Data

Sorted Data (Ascending)

Sorting

4 3 2 7 1 6 5 8 9

1 2 3 4 5 6 7 8 9

Sorted Data (Descending)

9 8 7 6 5 4 3 2 1

Bubble sort

 With the selection sort, we make one exchange at the end

of one pass.

 The bubble sort improves the performance by making

more than one exchange during its pass.

 By making multiple exchanges, we will be able to move

more elements toward their correct positions using the

same number of comparisons as the selection sort makes.

 The key idea of the bubble sort is to make pairwise

comparisons and exchange the positions of the pair if they

are out of order.

Bubble Sort

Bubble Sort
Example : We have an unsorted array list ‘S’ having 6 elements as shown below:

54

Various Passes takes place to sort the list .

Pass 1 : Number of steps= n-1 =6 -1 = 5.

S[1] is compared with S[2] ; as S[1]>S[2] then exchange takes

place.

5 11

1 2 3 4

If(8>7) then

interchange15 2

5 6

8 7 5

1 2 3 4

2

5 6

11 15

8 7

An Unsorted Array ‘S’ with 6 elements.

Bubble Sort

55

S[2] is compared with S[3];as S[2]>S[3],then exchange takes

place.

11

1 2 3 4

If(8>5) then

interchange

15 2

5 6

8 57

S[3] is compared with S[4];as S [3]< S[4],then no exchange takes place.

1 2 3 4 5 6

If(8>11) then

no interchange

5 87 1

1

1

5

2

Bubble Sort

S[4] is compared with S[5];as S[4]< S[5],then no exchange takes place.

56

S[5] is compared with S[6];as S[5]> S[6],then exchange takes

place.

1 2 3 4 5 6

If(15>2) then

interchange

15 27 5 8 11

7 5 8 11

1 2 3 4

15 2

5 6

If(11>15) then

no interchange

1 2 3 4 5 6

2 157 5 8 11

The 1st largest element 15 has obtained it’s proper

positioned S[6] in 5 comparison

Bubble Sort

Pass 2: n-2 = 6-2 = 4

57

S[1] is compared with S[2];as S[1]> S[2],then exchange takes

place.

S[2] is compared with S[3];as S[2]<S[3],then no exchange takes

place.

1 2 3 4 5 6

If(7>5) then

interchange

7 5 8 1

1

2 1

5

1 2 3 4 5 6

If(7>8) then no

interchange

5 7 8 1

1

2 1

5

Bubble Sort

58

S[3] is compared with S[4];as S[3]<S[4],then no exchange takes

place.

S[4] is compared with S[5];as S[4]>S[5],then exchange takes

place.

1 2 3 4 5 6

If(8>11) then no

interchange

5 7 8 1

1

2 1

5

1 2 3 4 5 6

If(11>2) then

interchange

1

1

285 7 1

5

Bubble Sort

59

The 2nd largest element 11 has obtained it’s proper positioned

S[5] in 4 comparison

1 2 3 4 5 6

5 7 8 2 1

1

1

5

Pass 3: n-3 = 6-3 = 3

S[1] is compared with S[2];as S[1]<S[2],then no exchange takes

place.

1 2 3 4 5 6

If(5<7) then no

interchange

5 7 8 2 1

1

1

5

Bubble Sort

60

1 2 3 4 5 6

If(7<8) then no

interchange

5 7 8 2 1

1

1

5

S[3] is compared with S[4];as S[3]>S[4],then exchange takes

place.

1 2 3 4 5 6

If(8>2) then

interchange

8 2 1

1

1

5

S[2] is compared with S[3];as S[2]<S[3],then no

exchange takes place.

5 7

Bubble Sort

61

1 2 3 4 5 6

5 7 2 8 1

1

1

5

S[1] is compared with S[2];as S[1]<S[2],then no exchange takes

place.

1 2 3 4 5 6

If(5<7) then no

interchange

5 7 2 8 1

1

1

5

The 3rd largest element 8 has obtained its proper position

S[4] in 3 comparisons.
Pass 4: n-4 = 6-4 = 2

Bubble Sort

62

1 2 3 4 5 6

5 7 2 8 1

1

1

5

S[2] is compared with S[3];as S[2]>S[3],then exchange takes

place.
1 2 3 4 5 6

5 2 7 8 1

1

1

5

The 4th largest element 7 has obtained its proper position S[3]

in 2 comparisons.

If(7>2) then

interchange

Bubble Sort

63

S[1] is compared with S[2];as S[1]>S[2],then exchange takes

place.1 2 3 4 5 6

2 5 7 8 1

1

1

5

The S[1] and S[2] have obtained its proper position in just a

single comparison.

Pass 5: n-5 = 6-5 = 1

1 2 3 4 5 6

75 2 8 1

1

1

5
If(5>2) then

interchange

Bubble sort Algorithm

Sorting an array ‘S’ of size ‘n’ in increasing order using the

bubble sort technique.

1. Repeat for p = 1 to n-1

2. For i= 1 to n-p

3. If S[i] > S[i+1] then

Exchange S[i] with S[i+1]

[End If]

[End Loop]

[End Loop]

4. Exit

Complexity of Bubble Sort Algorithm

The complexity of any sorting algorithm is analyzed through the number of

Comparisons required during the sorting procedure. In this algorithm we can easily

Determine the total number of comparisons. As we have already observed that an

Array of size n gets sorted after n-1 passes. In the bubble sort n-1 comparisons take

Place during the 1st pass which places the largest element of the array on the last

Position, n-2 comparisons take place in the 2nd pass which places the second largest

Element of the array on the second last position, kth pass requires n-k comparisons

Which places kth largest element at (n-k+1)th position of the array and the last pass

Requires only one comparison. Total number of comparison will be:

F(n) =(n-1)+(n-2)+(n-3)+………….+(n-k)+2+1

=(n-1)+(n-2)+………..+2+1

= ((n-1)*n)/2

The complexity of bubble sort algorithm will be Big O(n2)

65

Merging

Merging of arrays refers to combining the elements of

two linear arrays into a single array.

The following is the input and output of the MERGE

procedure :

INPUT: Array A and indices p, q, r such that p ≤ q ≤ r

and subarray A[p .. q] is sorted and subarray A[q + 1 .. r]

is sorted. By restrictions on p, q, r, neither subarray is

empty.

OUTPUT: The two subarrays are merged into a single

sorted subarray in A[p .. r].

We implement it so that it takes Θ(n) time,

where n = r − p + 1, which is the number of elements

being merged.

Merging

Merging Algorithm

MERGE (A, p, q, r)

1. n1 ← q − p + 1

n2 ← r − q

Create arrays L[1 . . n1 + 1] and R[1 . . n2 + 1]

2. FOR i← 1 TO n1

DO L[i] ← A[p + i − 1]

FOR j← 1 TO n2

DO R[j] ← A[q + j]

3. L[n1 + 1] ← ∞

R[n2 + 1] ← ∞

i ← 1

j← 1

Merging Algorithm

4. FOR k← p TO r

DO IF L[i] ≤ R[j]

THEN A[k] ← L[i]

i← i + 1

ELSE A[k] ← R[j]

j← j + 1

5. Exit

Merging

• Definition: merging of array refers to combining the elements of two linear arrays

into single array.

• When elements of the arrays are not sorted and merged array the it needn’t be in

sorted order.

• If the elements in given arrays are sorted and we want to merge them into third

array which is also required to be in sorted order.

70

Case 1: an unsorted array ‘A1’ with 7 elements

8 7 90 75

1 2 3 4

2

5

32

6

25

7

Unsorted array ‘A2’ with 6

elements

15

1 2 3 4

45 21 9 3

6

99

5

After merging A1 & A2 ; merged array ‘M’ is :

8 7 90 75 2 32 25

1 2 3 4 5 6 7

15 45 21

8 9 10 11

3

13

99

12

9

Merging

71

Case 2: sorted array A1 with 3

elements.

Sorted array A2 with 4

elements.

During merging a1[1]is compared with A2[1].As A1[1]<A2[1] so shift A1[1] i.e. 2

to first location of the 3rd array A3 at 1st position

2 3 7 8 9 15 21

1 2 3

2 7 8
1 2 3 4

3 9 15 21

Now a1[2]is compared with A2[1].As A2[1]<A1[2] so shift A2[1] will be

placed at 2nd position in 3rd array.
Now a1[2]is compared with A2[2].As A1[2]<A2[2] So shift A1[2] will be

placed at 3rd position in 3rd array.
Now a1[3]is compared with A2[2].As A1[3]<A2[2] so shift A1[3] will be placed at

4th position in 3rd array

Now the remaining elements are copied as such as they are already in

sorted order.

Now all the elements in sorted order.

Merging

Algorithm: Merges two sorted arrays and (in ascending order) into a third sorted

array (in ascending order). and are the lower bounds of given arrays and

respectively and and are the upper bounds of the given arrays and

respectively.

1. Set i =lb1 , j=lb2 , K =1.

2. While i≤ ub1 and j ≤ ub2.

3. If A1[i]<A2[j] then

Set A3[K]=A1[i]

Set i=i+1.

Set k=k+1.

72

Merging

Else

Set A3[K]=A2[j]

Set j=j+1

Set k=k+1

[End if]

[End loop]

4. If i>ub1 then

While j≤ub2

Set A3[K] =A2[j]

Set j=j+1

Set k=k+1.

73

Multi- Dimensional Arrays
• The elements of one dimensional array are referenced using only single subscript.

This is the reason that arrays are also popular with the name of single dimensional

array.

• Multidimensional array is the array in which elements are referenced by using 2 or

more subscript.

• The array whose elements are referenced by using 2 or more subscript. The array

whose elements are referenced by using 3 subscript is known as three dimensional

array

74

Two Dimensional Array

Consider an example of a class result as also shown below

101201 78

101202 86

101203 45

101204 34

101205 90

